1283D - Christmas Trees - CodeForces Solution


graphs greedy shortest paths *1800

Please click on ads to support us..

C++ Code:

#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
  
#define ordered_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update>
///  order_of_key return number of elements less than x.
///  find_by_order return index.

const int N =  3*1e5 + 10;
const int M = 998244353;

#define ll long long int
#define ld long double
#define rep(i, n) for (ll i = 0; i < n; i++)
#define ff first
#define ss second
#define rep1(i, n) for (ll i = 1; i < n; i++)
#define repr(i, n) for (ll i = n - 1; i >= 0; i--)
#define pb push_back
#define vi vector<int>
#define vll vector<long long>
#define vpll vector<pair<ll, ll>>
#define vvll vector<vector<ll>>
#define vvpll vector<vector<pll>>
#define pll pair<ll, ll>
const ll INF = LLONG_MAX;
ll binmult(int a, int b)
{
    ll ans = 0;
    while (b > 0)
    {
        if (b & 1)
            ans = (ans + a) % M;
        a = (a + a) % M;
        b >>= 1;
    }
    return ans;
}
ll binpow(int a, int b)
{
    ll ans = 1;
    while (b > 0)
    {
        if (b & 1)
            ans = binmult(ans, a);
        a = binmult(a, a);
        b >>= 1;
    }
    return ans;
}
ll bs_sqrt(ll x)
{
    ll left = 0, right = 2000000123;
    while (right > left)
    {
        ll mid = (left + right) / 2;
        if (mid * mid > x)
            right = mid;
        else
            left = mid + 1;
    }
    return left - 1;
}
ll inverse(ll x,ll M){
    ll y=binmult(x,M-2);
    return y;
}

// ll nCr(ll n, ll r)
// {
//     return ((fac(n)*inverse(fac(n-r)))%M*inverse(fac(r)))%M;
// }

//----------------------------------------------------------------------
// DSU
// vll par(N+1,0),sz(N+1,0);
// void make(int x){
//     par[x]=x;sz[x]=1;
// }
// int find(int x){
//     if(x==par[x]) return x;
//     return par[x]=find(par[x]);
// }
// void Union(int b,int a){
//     a=find(a),b=find(b);
//     // if(a!=b)
//     {
        
//         if(sz[a]<sz[b]) swap(a,b);
//         sz[a]+=sz[b];
//         par[b]=a;
//     }
// }
//--------------------------------------------------------------------
// Dynamic Range Minimum Segment Tree

// vll a(N), seg(4*N);
// void build(int ind, int low, int high){
//     if(low==high) {seg[ind]=a[low]; return ;}
//     ll mid=(high+low)/2;
//     build(2*ind+1, low, mid);
//     build(2*ind+2, mid+1,high);
//     seg[ind]=min(seg[2*ind+1], seg[2*ind+2]);
// }
// void update(ll ind, ll low,ll high, ll i, ll val){
//     if(low==high ){
//         if(low==i)
//         seg[ind]=val;
//         return ;
//     }
//     if(i<low || i>high) return ;
//     ll mid=(high+low)/2;
//     update(2*ind+1,low, mid, i, val);
//     update(2*ind+2,mid+1, high, i, val);
//     seg[ind]=min(seg[2*ind+1], seg[2*ind+2]);
//     return ;
// }
// ll query(ll ind, ll low,ll high, ll l, ll r){
//     if(l<=low && high<=r) return seg[ind];
//     if(high< l || low>r) return INT_MAX;
//     ll mid=(high+low)/2;
//     return min(query(2*ind+1, low, mid, l, r), query(2*ind+2, mid+1, high, l, r));
// }
//-----------------------------------------------------------------------
bool comp(pll &p, pll &q){
    if(p.ff== q.ff) return p.ss>q.ss;
    return p.ff<q.ff;
}
bool comp2(pll &p, pll &q){
    if(p.ff== q.ff) return p.ss>q.ss;
    return p.ff<q.ff;
}


// // vll dis(N,-INF), dis2()
// vpll dis(N), dis2(N);
// void dfs(ll i, vll &vis, vvll &g, vll &a){
//     vis[i]=1;
//     ll mx=0, mx2=0;
//     for(auto it: g[i]){
//         if(vis[i]) continue;
//         dfs(it,vis,g,a);
//         if(mx <= dis[it].ff) mx2=mx, ind2=ind1, ind1=it, mx=dis[it].ff;
//         else if(mx2 <= dis[it].ff ){

//         }
//     }
// }

void solve()
{
    ll n,m;cin>>n>>m;
    vll a(n);
    rep(i,n) cin>>a[i];
    sort(a.begin(), a.end());

    vll b=a;
    rep(i,n) b[i]*=-1;
    sort(b.begin(), b.end());
    
    queue<ll> q;
    map<ll,ll> mp;
    ll c=0;
    rep(i,n){
        q.push(a[i]);
        mp[a[i]]++;
    }
    // map<ll,ll> mp;
    vll v;
    while(!q.empty()){
        auto cur=q.front();
        q.pop();
        if(mp.find(cur-1)==mp.end()) {q.push(cur-1);mp[cur-1]++; v.pb(cur-1);}
        if(mp.find(cur+1)==mp.end()) {q.push(cur+1);mp[cur+1]++; v.pb(cur+1);}
        if(v.size()>=m) break;
    }
    // cout<<v.size()<<endl;
    ll d=0;
    rep(i,m){
        ll l=lower_bound(a.begin(), a.end(), v[i])-a.begin();
        ll u=lower_bound(b.begin(), b.end(), -v[i])-b.begin();

        ll mn=M;
        if(l!=a.size()) mn=abs(v[i]-a[l]);
        if(u!=b.size()) mn=min(mn,abs(v[i]+b[u]));
        // if(mn==M) cout<<i<<" "<<v[i]<<"\n";
        d+=mn;
    }
    cout<<d<<endl;
    rep(i,m) cout<<v[i]<<" ";
    cout<<endl;
}
    
//a[i]>=ur[i] a[i]<=mn[i]+ul[i] ur[i]=a[i]-ul[i] ul[i]=min(ul[i],a[i]-ur[i])

    int main()
    {
        ios_base::sync_with_stdio(false);
        cin.tie(nullptr);
        cout.tie(nullptr);
        int t=1;
        // cin >> t;
        ll tt = 1;
        ll p=1;
        while (t--)
        {    
            solve();
            tt++;
        }
        return 0;
    }
 
/*
to get the maxsum, and minsum of a array from start but processing from end:-
suppose s is the array, sul - suffix_minsum, sur - suffix_maxsum
for (int i = n - 1; i >= 0; --i){
            int d = s[i];
            sul.push_back(min(0, sul.back() + d));
            sur.push_back(max(0, sur.back() + d));
}
*/


Comments

Submit
0 Comments
More Questions

MATCHES Playing with Matches
HRDSEQ Hard Sequence
DRCHEF Doctor Chef
559. Maximum Depth of N-ary Tree
821. Shortest Distance to a Character
1441. Build an Array With Stack Operations
1356. Sort Integers by The Number of 1 Bits
922. Sort Array By Parity II
344. Reverse String
1047. Remove All Adjacent Duplicates In String
977. Squares of a Sorted Array
852. Peak Index in a Mountain Array
461. Hamming Distance
1748. Sum of Unique Elements
897. Increasing Order Search Tree
905. Sort Array By Parity
1351. Count Negative Numbers in a Sorted Matrix
617. Merge Two Binary Trees
1450. Number of Students Doing Homework at a Given Time
700. Search in a Binary Search Tree
590. N-ary Tree Postorder Traversal
589. N-ary Tree Preorder Traversal
1299. Replace Elements with Greatest Element on Right Side
1768. Merge Strings Alternately
561. Array Partition I
1374. Generate a String With Characters That Have Odd Counts
1822. Sign of the Product of an Array
1464. Maximum Product of Two Elements in an Array
1323. Maximum 69 Number
832. Flipping an Image